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Abstract. Recent work has shown that wavelet-based numerical schemes are at least as effective 
and accurate as standard methods and may allow an ‘easy‘ implementation of a spacetime 
adaptive grid. Up to now, wavelets which have been used for such shldies are the ‘classical‘ 
ones (real Daubechies’ wavelets, splines, Shannon and Meyer wavelets, etc) and were applied to 
diffusion-type equations. The present WO* differs in two points. Firsfly, for the first time we use  
a new set of complex symmetric wavelets which have been found recently. The advantage of this 
set is that, unlike classical wavelets, they are simultaneously orthogonal, compactly supported 
and Symme(rc. Secondly, we apply lhese wavelets to the physically meaningful cubic and 
quintic nonlinear Sclvljdinger equations. The most common method to simulate these models 
numerically is the symmetrized split-step Fourier method. For the first time, we propose and 
study a new way of implementing a global spacetime adaptive discretization in this numerical 
scheme, based on the interpolation properties of complex-symmetric scaling functions. Second. 
we propose a locally adaptive ‘split-step wavelet’ method. 

1. Introduction 

This paper is devoted to an application of complex-symmetric Daubechies’ wavelets and 
scaling functions to numerical simulation of nonlinear partial differential equations (PDeS). 
The mathematical models we have retained are the cubic (U = 1) and quintic (U = 2) 
nonlinear Schrodinger (m) equations 

(1.1) 

because they can exhibit strong gradients for particular initial conditions and of their 
importance in nonlinear optics as well as in many ‘other fields. Throughout this paper, 
we use f as the evolution parameter (which is a space variable in nonlinear optics) and the 
notation NLS‘+’ for A > 0 and NLS‘--’ for A < 0. 

The idea of using wavelets to perform numerical simulations of PDES is not new [I-81. 
The motivation comes from the fact that wavelets provide a mathematical representation 
which can resolve numerical difficulties due to singular phenomena. More exactly, 
properties such as orthogonality and the compact support of multi-resolution bases (scaling 
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functions and wavelets) as well as the exact representation of polynomials of a fixed 
degree on scaling functions, allow efficient and stable calculation of regions with transient 
phenomena or strong oscillations. In addition, the multi-resolution structure of wavelet 
orthonormal bases can provide a simple and effective framework for spacetime adaptive 
algorithms; the adaptive-mesh refinement is implemented by successively adding layers of 
‘detail’ which increase the resolution of the numerical approximation. 

In previous work, numerical implementations of wavelets have been performed using 
two main approaches. A first one, known as the wavelet-Calerkin method, consists of 
projecting the solution of the PDE onto the space spanned by the integer translation of 
the scaling function [l-3,6]. To have good approximation properties, orthogonality and 
compact support of the basis elements are required. The choice of the scaling function is 
also motivated by the regularity of the projection wanted, that is, the maximum degree of 
the polynomials contained in the projection space. For these reasons, Daubechies’ scaling 
functions have been widely used in such analysis. Although the asymmetry of the real 
Daubechies’ scaling functions does not seem to introduce a significant asymmetry in the 
numerical solution, we think that the use of symmetric scaling functions, as is the case in 
this work, should lead to even more accurate results. A second approach makes use of the 
multi-resolution properties of the wavelets in order to develop adaptive numerical schemes 
[4,5,7,8]. Here, the projection is made onto the orthogonal wavelet spaces themselves, up 
to some scaling function space which fixes the coarsest resolution. The wavelet spaces are 
the ‘details spaces’ of the numerical approximation and contain informations at different 
resolution levels. The idea is to track the singularity by adding successive layers of 
resolution, that is, adding wavelets which are sensitive at finer scales. For better stability, 
the time-step of such numerical schemes can also be adapted 181. 

Up to now, the wavelets which have been used for such studies are the ‘classical’ ones 
(real Daubechies’ wavelets, splines, Shannon and Meyer wavelets, etc) and were applied to 
real-valued models: Burger, diffusion and linear advection equations. The Burger equation 
was the most popular ‘laboratory’ because (i) it constitutes, from a numerical point of view, 
a one-dimensional version of the important Navier-Stokes equation, (ii) i t  can develop sharp 
gradients in the small viscosity limit, and (iii) the exact solution of the Cauchy problem is 
known. For these models, wavelet-based numerical schemes have been shown to be at least 
as effective and accurate as standard methods [l ,8].  

Our work differs in two respects. First, for the first time we use a new set of complex 
wavelets which have been found recently [9] using a particular parametrization of the multi- 
resolution analyses [lo]. The advantage of this set is that, unlike classical wavelets, they 
are simultaneously orthogonal, compactly supported and symmetric. Second, we apply 
these wavelets to the cubic and quintic N L ~  equations (1.1), which are historically two 
of the most important models ‘on the market’ and have numerous applications in optics, 
fluid dynamics, engineering, biology, chemistry and applied mathematics [ 1 1-16]. The 
cubic NLS equation is also a limiting case of the Navier-Stokes equation and has an exact 
formulation of the Cauchy problem in terms of the inverse scattering method. In addition, 
both models can also lead to strong gradient phenomena. For the cubic NLs‘--’ model, 
smooth localized initial conditions can evolve toward a typical breaking-wave phenomena 
which exhibits very high-frequency oscillations [ 17,181. Also, the quintic NLS‘t’ equation, 
which has similar properties to the (2+ 1)-dimensional cubic NLS’+’ equation which models 
the three-dimensional self-focusing theory in nonlinear optics. can generate solutions with 
localized structures in space which evolve quickly in time and eventually blow up [19-211. 
Finally, the breather solutions [14,22] (also known as the bounded N-soliton solutions) of 
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the cubic a s ' + '  equations exhibit periodic peaking of the field and can be use to test the 
ability of an adaptive algorithm to increase and decrease the resolution. 

This paper is organized as follows. In section 2, we recall the mathematical background 
needed to understand the paper: wavelet multi-resolution theory [23-26], complex- 
symmetric Daubechies wavelets 191, representation of differential operators, collocation 
techniques and wavelet transform. This is not a mere exercise since the subject is relativeIy 
new. In addition, we reformulate some known results in a simpler and original way. In 
section 3, we show how the split-step Fourier method [14,27,28] can be reformulated in 
terms of wavelet4alerkin projection or multi-resolution analysis. We compare the accuracy 
of the Fourier and wavelet4alerkin versions on the typical soliton propagation simulation. 
In section 4, we propose and study a new way of implementing a global spacetime adaptive 
discretization in the numerical scheme based on the recomposition properties of higher- 
order scaling functions. This globally adaptive algorithm will be tested on typical high- 
gradient simulations (optical breaking waves, wavecollapse and bound-soliton solutions). 
Here we are more concerned with the feasibility and accuracy of the algorithm rather than 
its simulation time efficiency. Finally, i n  section 5, we concentrate on a full wavelet 
decomposition. We give a description of a possible local spacetime adaptive scheme which 
implements the multi-resolution analysis and incorporates a global interpolation scheme 
using scaling functions in a pseudo-spectral way. 

2. Mathematical backgrounds 

2.1. Multi-resolution analysis 

Let us f is t  describe the basic idea and the principal characteristics of the multi-resolution 
wavelet .decomposition. The main equation of the multi-resolution theory is the scaling 
equation which establishes a connection between the two symmetries underlying the wavelet 
theory: dilations and translations. Given a set of coefficients a*, k E Z which we u d l  
describe later on, the scaling equation 

- k )  X € R  (2.1) 

and the normalization 

define a scaling function ~ ( x ) .  By defining the set of translates of the dilated function ~ ( x ) ,  

vj,k(X) = 2j'*p(2jX - k )  j E z (2.3) 

the multi-resolution analysis of L2(R) consists of the'decomposition of the Hilbert space 
L2(R) (the space of square-integrable functions) into the chain of closed subspaces 

' ,  c v,-, c v, c v,+, c ... (2.4) 

where 
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and such that 
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n V, = 10) U vj = LZ(W 
j 

Multi-resolution aims to decompose L2(R) as 

where Wj is defined as the orthogonal complement of V j  in Vi+,, that is 

vj+, = v, 8 wj . (2.8) 

(2.10) 

and @ ( x )  is the wavelet of the multi-resolution analysis which satisfies 

$ r ( X ) = 2 x b k r p ( 2 X - k )  X E R .  (2.11) 
k 

The orthogonality between the space V, and W j  leads to the relation 

(2.12) k -  bk = (-1) 0 1 - k  

where ‘bar’ stands for complex conjugate. 
Following (2.7), any function of L2(B) can be expanded as a linear combinaton of 

translates of the scaling function q { x )  at some fixed scale and the translates of the wavelet 
@ ( x )  expressed at finer scales as 

If for some small scale j ,  = N (large N) the second contribution in (2.13) happens to 
be negligible (it corresponds to the high-frequency component of f ( x ) ) ,  then f ( x )  can be 
written as the so-called ‘waveJet-Galerkin’ expansion 

(2.14) 

Thanks to the orthonormal decomposition (2.8). we then have 

VN = VNo 8 WN, @ w N o + l . .  . @ W N - I  (2.15) 

for some larger scale NO < N (see figure 1). This decomposition amounts to consider the 
equivalent finite expansion for f ( x ) .  

(2.16) 

In this expansion, the first contribution represents the approximation of f(n)  at a given 
‘coarse’ scale. The remaining terms are the corrections at finer scales. Equation (2.16) 
completely describes the function f ( x )  within the accuracy of the projection (2.14). 
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Fiyre 1. Schematic representation of the multi-resolution analysis. N and NO are the finest 
md coarsest resolution levels. respectively. 

2.2. Complex symmetric wavelets 

Let us now tum to the construction of the basic ingredient of the multi-resolution analysis: 
the scaling function p(x). We consider the solutions of (2.1) with four important constraints 
on ~ ( x ) :  

(i) compactness of its support, 
(ii) orthogonality of its translates, 
(iii) regularity, and 
(iv) symmetry. 

The first condition insures an exact local description of the functions of L2(R). As 
a consequence, there are a finite number of non-vanishing scaling coefficients ak and we 
will consider ai # 0 for k = - J ,  - J  + 1 ,  . . . , J ,  J + 1, where J is an arbitrary integer. 
It is straightforward to show that both rpj,w(x) and $rj , i (x)  have a support in the interval 
[2-](-J + k ) ,  2-j(J  + k + l)]. f i e  first three conditions define the so-called Daubechies' 
wavelet analyses [23] for which the regularity condition sets the 'polynomial content' of 
the V spaces (scaling functions of regularity R ( R  < J) allow exact representations of 
polynomials of order R in the V spaces). The scaling function and its translations thus 
define a polynomial interpolation scheme up to order J .  In this work, we consider the 
maximum regularity for a given compact support, i.e. we take R = J .  

The symmetry requirement has been explored only recently [9]. As already noticed 
by Lawton [29], the solutions must be complex valued. Figure 2 shows an example of a 
complex-symmetric scaling function and wavelets for J = 4. The values for the Q'S can 
be found in [9]. When the above four constraints are satisfied, the scaling functions pi&)' 
and the associated wavelet @ j , ~ ( x )  are found to be even and odd, respectively, about the 
point 

x. ,  ! k  - - 2-j-1 + k 2 - j .  (2.17) 

The symmetry property of ~ ( x )  thus implies that the odd-centred moments vanish, that is, 

In addition, the second-centred moments ( k  = 2) turn out to be purely imaginary [9]. 
Property (2.18) helps us to compute the coefficients U N . ~  of the Galerkin expansion (2.14) 
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Figure 2 Real pm (full curve) and imaginary p m  of lhe 3 = 4 complex-symmetric scaling 
function (upper figure) and wavelet (lower figure). 

with good accuracy. In fact, making a Taylor expansion of f ( x )  around the points X N , ~  
in (2.17) and using the orthogonality and the normalization of the scaling function, the 
projection of f ( x )  onto VN leads to 

VN,k = ((ON,RIf) 

(2.19) 

where y is a real coefficient which only depends on J (e.g. y = 0.322748 for J = 2 and 
y = 0.178936 for J = 4). For sufficiently smooth functions f(x)’and large N, the second 
term in (2.18) can be neglected. 

Thanks to (2.1) and (2.1 I ) ,  one can show that the coefficients uj,k and wj.k (NO < j c 
N - I )  can be calculated recursively from VN,k by 

uj--I,k = fixzmUj.Lk+m Wj-1.k = f ix& Uj,ZX+m. (220) 
m m 

Such a transformation will be denoted by W .  The orthogonality conditions imply the 
following inverse for W :  

(2.21) 

Finally, in the particular application of the present work. the simulation is done for 
a finite ‘spatial window’. This implies that the infinite range of k will be reduced to a 
finite set by normalizing the spatial sampling of f ( x )  on the interval [ - i, $1. Since the 
compact support of the basis functions is finite, the convolutions (2.20) and (2.21) involve 
a finite number of sampling points outside the window. The field samplings outside the 
window can, however, be estimated using simple extrapolation techniques; periodization, 
extrapolation or reflection. We have found it convenient to use periodization when f ( x )  
has finite bandwidth (e.g. bright solitons) and mirror reflection for infinite bandwidth (e.g. 
dark soliton). The function f(x)  will then be written as in (2.16) with only 21 terms at 
each level j (see figure 3), corresponding to -f < x1.k < f ,  i.e. 

v j + l . k  = z / z ~ [ a k - z m  Uj.m -I- bk-zm W j m ] .  
m 

k E ~ ( j )  = { 4 - 1  + 1 ,..., 2j-1 - I } .  (2.22) 
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. . . . . . .  .:. . . . . . .  

Figure 3. Illustration of the position of the sampling 
points in the normalized x-window for the simulation. For 
symmetric wavelets, these poinh correspond to the centre 

0 of the wavelet support. - 1 / 2  

2.3. Differential operators 

Let us conclude this section with the description of the differential operator dn/dxn in the 
multi-resolution scheme. Following the expansion (2.15). this amounts to considering the 
matrix elements of the differential operator in the space VO, that is 

Using (2.1) with an obvious change of variable, we obtain 

2J J+I  
c y  = 2"+' Z,+,'-Da" c2' .  

m=-zl "=-I 

(2.23) 

(2.24) 

The parameters c:) only depend on the wavelet order J and not on the wavelet type for a 
given J (real, complex symmetric or complex asymmetric). 

Equation (2.24) can be cast in the matrix form 

where the (4J + 1) x (4J + 1) matrix A is the 'Lawton matrix' [26] of components 

J + I  

Ak,k'  &+Y-lkam . 
m=-J 

(2.26) 

Therefore the matrix elements of the nth derivative operator in VO are the components of 
an eigenvector of A for the eigenvalue b. = 1/2"+'. Consistency requires that such an 
eigenvector should be unique for this nth derivarive operator to be meaningful. In particular, 
the n = 0 derivative condition is nothing but the orthonormality condition on the translates 
of ~ ( x ) .  This is the Lawton theorem. The other eigenvalues h = 4, $, ... result from the 
regularity constraints on the scaling coefficients. 

Let us mention that for a given n ,  equation (2.25) only defines the corresponding 
eigenspace for A,. Finding the unique eigenvector c(") requires an extra relation which 
normalizes the A,-eigenvector. This relation can he derived as follows. Let us define 
CJ,(X) = Cl P q ( x  - 1). Denoting by M K  the kth moment of the scaling function, i.e. 

Mk = 1 @(x)xkdx MO = 1 (2.27) 
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we can show that 

L Gagnon and J M Lim 

Since we consider orthonormal bases and J vanishing moments for the wavelets, i.e. 

$ ( x ) x k d x = O  O < k < J  s 
relation (2.28) yields 

By successive derivation of this expression, we obtain 

Q,?(x) = n !  and @Ap)(x)  = 0 V p  > n 

and consequently 

Equation (2.32) leads to the normalization condition 

Thus, given an arbitrary eigenvector r("), the components of c(") satisfy 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

Notice that this result uniquely defines the nth derivative operator only for n < J .  It will 
be used in the next section to express the Nu equation on the wavelet basis. 

3. The basic numerical algorithm 

One of the most popular numerical scheme to solve Nu-type equations is the symmetrized 
split-step Fourier method [21,27,28]. This is essentially a pseudo-spectral algorithm which 
handles the linear and nonlinear parts of the model differently. Because nonlinear terms are 
more easily calculated in the original spacetime domain, only the linear part is decomposed 
into its Fourier components. 
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3.1. The symmetrized split-step method on wavelets 

The NLS equation (1 ,  I ) ,  and generally any evolution equations of the form 

U, = [ L  + N ( t ) ] u  (3.1) 

where L and N ( t )  are linear and nonlinear operators. respectively, can be solved formally 
as 

u(tz) = ec+Nu(tl) (3.2) 

where L = (tz-t l)  L ,  N = h: N ( t )  dt and t l ,  tz are the initial and final times, respectively. 
In general, linear and nonlinear effects act together during the evolution and cannot be 

handled separately. Mathematically, this results from the fact that L and N do not commute, 
that is, # e'&. The essence of the split-step method consists in assuming that for 
a small time-step At = t z  - ? I ,  we can pretend that the linear and nonlinear terms act 
independently such that 

u(tz) 2 ecJ2YecJ2u(t,). (3.3) 

Relation (3.3) is the basic scheme of the numerical algorithm. 
The main interest in the method is that the execution of the linear operator eCl2* when 

carried out in the Fourier domain, can be calculated numerically very quickly. The Fourier 
basis is, however, not well adapted to high gradient phenomena since the basis elements 
are globally defined. In contrast, the wavelet basis is a local one and the linear evolution 
can, of course, be calculated on it. In particular, one can project the field on a space V N ,  
where 2N is the number of field samples (the wavelet-Galerkin method), or make a wavelet 
transformation of it, that is, decompose the field on . . . WN-S fB W'v-2 fB W,V-~. In both 
cases the projection can easily be implemented using the same numerical algorithm without 
discarding the essential features of the time-step splitting. Schematically, the evolution 
over one time-step At follows the symmetrized split-step method except that the Fourier 
transform T is replaced by a projection PN onto VN or by a wavelet transform W on 
V N ~  @ WN, @ WN,+I . . . @ WN-, ,  together with the appropriate representation of the second 
derivative operator. Finally, the nonlinearity can be treated in the finest resolution space 
V N .  

3.2. The wavelet-Galerkin projection 

For now, let us concentrate on the Wavelet-Galerkin procedure. We will go back to the 
wavelet projection in section 5. Suppose the field u(t ,  x )  has been regularly sampled over 
2N points on the interval [-$, $1. Projecting u ( t , x )  onto V N ,  we obtain 

(3.4) 

where u ~ , k ( t )  = u ( t , x N , k )  and X N , ~  = are the collocation (sampling) points. The 
advantage of knowing the field projection on V N  is that one can easily calculate the nonlinear 
term using a simple collocation procedure. In fact, if the sampling is dense enough. the 
nonlinear term [u(t ,  x)['" can be estimated from (3.4) with coefficients 2-N/21UN,k(t)12". 
This will be used throughout all our simulations to calculate the nonlinear effects. 
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The main difference between Fourier and wavelet scaling functions bases lies in the 
representation of the second space derivative [30,31]. In particular, this operator is no 
longer diagonal in the scaling function basis. 

Substituting (3.3) into iu, + $uxx = 0, multiplying from the left by ( D N , , ( x ) ,  integrating 
over -CO e x e CO and making use of the orthogonality relations between translated 
scaling functions, leads to an equation of the form 

where 

(35a) 

(3.5b) 

The matrix T, is a band-diagonal matrix having the same 45 + 1 non-vanishing elements 
on each row. Equation (3.5) can be solved exactly as 

U N ( ~ Z )  = e  i ( 1 ~ - h l T ~ f 2 ~ ~ ( ~ ~ )  , (3.6) 

As mentioned in section 2, the coefficients c(’) only depend on the wavelet order J and not 
on the wavelet-type. This is not the case for the matrix T N .  In particular, TN turns out to 
be real and symmetric for complex-symmetric scaling functions. 

The value of the coefficients cy) for the wavelet used in this work, i.e. J = 2. 4 and 8, 
are given in table 1. 

Table 1. Values of the coefficients cj” for the second derivative operator. 

c?’ (= c!!) J = 2 J = 4 J = 8  

c;;) -% -3.834994 313 783 547 318 
356 2.414790351 19287232 

I 

c2 (2) -% -0.649502 1899807847862 
12 0.180953550093409320 1 $1 

cp’ - ~~ -0.029907980437657401 96 3 

q 0.000794620557 1436 
c p  0.000367 14538389 
CY’ 0.000001656544 13604 

0.000000003 538760056 
Cf) 
,(21 

c(21 

p 1  
p 1  

p1 
$21 

2) 

IO 

I1 

I1 

13 

I 4  

I5 

-3.5 18 86 I OS4 0 I O  038 

2. I94 072686579494 1 

-0.610 929 1 I 2  09 1 2 14 9 

0.247 332 322 694 620 9 

-0.094970 844750 517 I8 
0.0300686136125544 

-0.00724847869285098 
0.001 U0499099443004 

-0.000 133610006425686 
0.000009 130930738 6 

-0.000 000 734 346 69 
0.000 000 047 555 795 9 
0.000 000 006 327 05 I 767 
0.000000000049283 6 
0.000 000 000 000 219 3 
2.95325 x 

1.7699 x 10” 
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3.3. Accuracy considerations betlveen Fourier and waveler-(;a[erkin projections 

It is instructive to compare the accuracy of the split-step Fourier and wavelet-Galerkin 
numerical schemes. Only typical results, using the fundamental soliton solution of the 
cubic Nu'+' equation as a benchmark, will be presented here. For A = I ,  this exact 
solution is 

(3.7) 

where U is the soliton speed. The parameter U has not been normalized to 0 using 
the Galilean boost symmehy of (1.1) since this symmetry is broken by the spacetime 
numerical discretization. The other two free parameters, the amplitude and phase, have been 
normalized to 1 and 0, respectively, using the dilatation and constant phase symmetries of 
(1.1). 

u( t ,  = sech(x - u t )  e iux+i(l-v2)t/2 

0 . 0 1 ~  

_ _ _ _ _ - - - - -  
0.001 : 

Foucier,J=4,J-8 - 
3 4  - - . 

_ _ - -  
2 _ _ _ _ - - - -  _ _ _ - - -  
a w a s  : - -  
2 
y1 . "-0 - - 
a 

le-06 

le47 "-0 /. 
le-08 

0 0.1 0 . 2  0.3 0 . 4  0 . 5  0 . 5  0.1 0.8 
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We have compared solution (3.6) to its numerical simulation (with initial condition 
u(0, for U = 0 and U = 8/71 using Fourier and J = 2, 4 and 8 scaling function bases, 
over a time range of a/4 with 1024 sampling points and a time-step of At = n/2560. The 
mean square error on the amplitude and phase is calculated over the 256 central samples 
using the formula 

error= AX CIF~"' - F, ""rn I ? ] ' P  
[ i  

(3.8) 

where Ax is the space-step and F is the amplitude or phase. The results are depicted in 
figure 4, which gives the evolution of the errors at a regular time interval of aj32. The 
J = 2 basis is always less accurate than Fourier, J = 4 and 8; up to 100 times less accurate 
for U = 0. This can be explained by the fact that, even though the second derivative operator 
can be represented on the J = 2 wavelet basis, the scaling function and wavelet are not 
C@). The cases J = 4 (which is almost C")) and J = 8 give the same error as Fourier for 
the test function (3.7). Note that more irregular test functions could lead to different results 
for J = 4 and 8 if their representation in terms of fourth-order polynomials is not accurate 
enough. 

In view of the above results, for the rest of the work we choose a multi-resolution space 
of order J = 4 for our simulations. The J = 8 basis will only be used in the upsampling 
scheme which will be described in the following section. We believe that this possibility 
of mixing wavelet orders, i.e. regularity levels, in a numerical scheme is an advantage over 
standard numerical methods and should be exploited in other applications of wavelets. 

4. A globally adaptive algorithm 

4.1. Description 

This section concerns a global adaptive grid for the split-step Fourier or wavelet-cialerkin 
methods described in section 3. More precisely, we want to show how regularity properties 
of scaling functions can be used to increase (or decrease) the field sampling over the entire 
x-window during the simulation [32]. In particular, for the Fourier projection, this results in 
an efficient hybrid numerical algorithm which combines the rapidity of the split-step method 
for calculating the time evolution and the interpolation properties of scaling functions for 
the upsampling process. 

[tl 
The idea is the following. At the beginning of each time-step, one performs a one- 

level wavelet transform of the field U@,*) from the sampling level j to level j - 1, 
in order to detect the presence of strong gradients. When the maximal absolute value 
of the wavelet coefficients wj- l  is greater that a predetermined threshold (fixed to 0.005 
in our simulations), the number of collocation points is doubled using an interpolation 
process on the field sampling at level j .  This should be done by performing a transform 
7, from level j to level j t 1, of the 2) field samples UJ with the 2i wavelet 
coefficients wj  set to zero. The result of this transformation should be a set of 21+l 
scaling coefficients uj+I which constitute the new field sampling (after multiplying by 
a fi  normalization factor). An important point to be careful about is that no local 
asymmetry is introduced during the up-sampling process. This is where the symmetry 
properties of the complex scaling functions are useful. Unfortunately, a recomposition 
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Figure 5. ( 0 )  Evolution of the Beld amplitude, field phase and wavelet coefficient amplitude 
for typical brraking-wave phenomena in lhe cubic NLS'--I equation and ( b )  variation of the 
maximum amplitude wavelet coefficient during the adaptive simulation. 

using complex scaling functions slightly couples the real and imaginary parts of the field 
u ( t , x )  (for instance, by introducing imaginary components in uj+l on an initial real field 
U)). This can be avoided, by up-sampling the field, using a linear combination -1 of the 
inverse wavelet transform and its complex conjugate, that is 7 = i(W-l + W ); in 
order words. by up-sampling the field using the real part of the coefficients ak only. 
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In fact, we have found this recomposition scheme very accurate, provided that the 
order of the up-sampling scaling function is larger than the order of the decomposition 
wavelet. The reason is that the second centred moment of the scaling function I&). 
that is J (x  - ; ) * @ ( x )  dx, is purely imaginary and decreases with order J .  In addition, 

(x  - i )*@(x) dx = 0 for odd values of k since ~ ( x )  is symmehic. In our simulations, we 
have chosen to up-sample with the J = 8 scaling function and decompose with the J = 4 
wavelet. 

4.2. Applications 

We have written a C program which performs the above-described global recomposition. 
Both Fourier and wavelet pseudo-spectral methods described in section 3 have been tested 
and have given similar results. Fast Fourier transforms and complex structures have been 
implemented using standard techniques [33]. A decrease in the time-step by a factor of 4 
is done after each up-sampling in order to keep numerical stability. The maximum wavelet 
amplitude for the up-sampling threshold has been fixed to 0.005. 

Figure 5 shows a first simulation leading to high-field gradients. This is a typical 
‘breaking-wave’ phenomena in optics which appears in the normal dispersion regime, 
that is, for the cubic NLs‘--’ equation with A < 0. In this simulation, h = -900, 
the initial field u ( 0 , x )  = sech(x) has been sampled 128 times, the time range is 
n/32 and the initial time-step has been set to lr/1600. The amplitude of  the wavelet 
coefficients w ( t )  is quite instructive of the sharp fieid structure evolution. Figure 5(b) 
shows the evolution of the maximal amplitude of the wavelet coefficients as f increases. 
Each peak is the result of a new sampling. The final number of collocation points 
is 2048. A comparison with a non-adaptive simulation (with 2048 samples and the 
corresponding At = x/409600) shows that the accuracy of the adaptive simulation is 
quite satisfactory. In fact, no difference can be detected on the amplitude and phase 
from the plots, Only the wavelet coefficients tu,-,, where j is the sampling level, are 
sufficiently sensitive to show that the slight ripples around 1x1 = 2 at the end of the 
simulation are absent in the non-adaptive simulation (see the bottom right-hand plot on 
figure 5(a)). 
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Flyrr 6. (Continued) 

GI 

Figurc 7. ( a )  Variation of the &mum amplitude wavelet coefficient during the adaptive 
simulation ofthe two-soliton solutioo ofthe cubic Nu'+'  equation and (b)  field amplitude. field 
phase and wavelet coefficient amplitude anefter one period with and without ndaptivity (first and 
second IOW. respectively). 

A second simulation generating high grad:ents is shown on figure 6. This is a typical 
'blow-up' phenomena which can be observed for the NLS'+' equation whenever the space 
dimension D and the nonlinear coefficient U are related through u D  2 2 [19-21]. In this 
case, any initial condition having a L2-norm larger than the critical value fixed by the Lz- 
norm of the fundamental solitary wave solution evolves toward a singularity. In our case 
(D = 1 and U = 2) the exact expression for the solitary wave can be normalized to 

~,,~(t, x )  = ~1 /4sech1 /Z(~)e i r~s  . (4.1) 

The initial condition in figure 6(n) has been chosen as 1.5uS,1(0, x )  with only 64 samples 
and At = 0.97n/320. The maximum sampling has been fixed at 2048 points. As shown 
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F i y e  8. (a) Evolution of lhe field amplitude. field phase and wavelet coefficient amplitude for 
&e bound three-soliton solution of lhe cubic NLS' t '  equation and (b) variation of the maximum 
amplitude wavelet mefficicnt during the adaptive simulation. 

on figure 6(6), the fieid evolves through five successive up-samplings up to 2048 points. 
At the end of the simulation, a very sharp peak is generated (over a large pedestal). Our 
up-sampling process has been able to handle such a high gradient effect. 

The above adaptive algorithm can also be modified to allow a decrease in the number 
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Figure 8. (Continued) 

of sampling points when sharp gradients tend to vanish. Similarly to above, the new field 
sampling u ( f , x x N . , , d  = 2 ( N - l ) l Z ~ ~ - l  can be obtained form the scaling coefficients U N  using 
the inverse 7-’ of the above up-sampling transform 7. 

Interesting solutions which can be used to test this idea are the breather (or bounded 
soliton) solutions of the cubic NLS‘+’ equation. These are solutions where the amplitude 
evolves periodically in time, with a period of n / 2 ,  through successive amplitude peakings. 
They correspond to the initial conditions 

U ( O , X ) ~ ~  = Nsech(x) (4.2) 

where N is the solution order (the number of solitons involved in the solution). 
Figure 7(u) shows the variation of the maximal amplitude of the wavelet coefficients 

with adaptivity for the case N = 2, over one period ( t  = n/2) with 128 initial samples 
and At = n/2560. The upper threshold has been fixed to 0.005 and the lower one to 
30% of the maximal wavelet amplitude obtained after the first up-sampling. This is to 
avoid a premature decreasing of the sampling due to the oscillatory structures (see figure 
7(u)) during the up-sampling relaxation time. The sample number goes up to 512 at the 
half-period where a peak structure arises in the field amplitude. 

Although the up-sampling process is very accurate for the field amplitude, the field 
phase is more sensitive to it. This is illustrated, for instance, in figure 7(b), which compares 
the field amplitude, phase and wavelet amplitude coefficients at the end of the simulation 
obtained for the above adaptive grid (first row) and a fixed 128 points simulation with 
At = n/2560 (second row). One observes that the field amplitude is more accurate for 
the adaptive simulation. The same observation stands for the central region of the phase. 
However, the phase has a more important oscillatory structure at the window limits than 
the non-adaptive scheme (5% of the theoretical value of 7r/4 rather than 0.2% for the non- 
adaptive algorithm). One can improve the accuracy by increasing the initial sampling rate 
and/or decreasing the up-sampling level. In any case, this cannot be considered as a major 
drawback of the algorithm since the field amplitude is very small at the window. 
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Finally, figure 8 shows the numerical simulation for the N = 3 breather using the same 
initial parameters as the N = 2 case. The number of collocation points varies as 128- 
25~512-1024-512-102rl-512-256-128. following the periodicity in the field evolution. 
One observes that the periodicity of the field amplitude is well described. Taking into 
account that four up-samplings and four sub-samplings have been performed during the 
simulation, the 10% accuracy on the phase, with respect to the theoretical value of n/4, is 
very satisfactory. 

5. A locally adaptive algorithm 

In the previous section, we have used wavelets (or more precisely scaling functions) as an 
interpolating tool for implementing a global adaptive grid. We will now concentrate on 
local adaptivity using the multi-resolution property of the wavelet basis, In this paper, we 
will restrict ourselves to the description of the numerical algorithm. Its implementation and 
testing will be reported later. 

5.1. Linear evolution on wavelet bases 

Let us first recap on how the linear part of the NLs equation is projected onto the wavelet 
basis. The first step is to calculate the matrix representation of the second-derivative operator 
in the wavelet basis. Suppose the field ~ ( t .  x )  has been sampled 2" times and projected onto 
VN as in (3.1). Using the multi-resolution decomposition of VN up to a coarsest resolution 
2No, No < N ,  one obtains 

The corresponding scaling and wavelet coefficients contains the 'averaged' and 'detailed' 
information on u ( t , x )  at a given time f, in the transformed space. Substituting (5.1) 
into iut  + $dXx = 0, multiplying from the left by @N&) and &(,r), integrating over 
-CO < x 4 CO and making use of the orthogonality relations between scaling and wavelet 
functions, leads to an equation of the form 

(5.26) 



Symmetric Daubechies' wavelets and solution o j N u  equations 8221 

and A ,  B ,  r and T are band matrices whose elements are 

(A;)M = 1 q J , , k  2 @j, ,  dr 
dZ 

A' I = AI (5.3a) 

(5.3c) 

(5.3d) 

Matrices Ai ,  Bj, rj and T, have 45 + 1 non-vanishing elements on each row. Matrices 
Aj and T,  are real and symmetric while rj = ( B j ) t .  For complex-symmetric wavelets, the 
complete matrix M is Hermitian. For real wavelets, it is symmetric. 

Equation (5.2) can be solved exactly as 

(5.4) 

The matrix elements for M can be calculated once and for all and stored in memory. To 
facilitate this calculation, we can use the fact that operators A;, with j < j ' ,  can be obtained 
by applying a wavelet transform to each row of all operators Bj. Similarly, operators A { ,  
with j '  < j ,  can be calculated by applying a wavelet transform on each column of operators 
rj. These matrices A i ,  El, rj and T,  can be expressed in terms of the coefficients cl of 
section 2 as 

(5.5a) 

(5.56) 

(5.5c) 

(5.5d) 

where cy' are given in table 1. 
Finally, a second and more practical way to calculate the matrix M is to perform a two- 

dimensional wavelet transformation of the matrix TN. For tensor product wavelet bases, this 
consists of performing a onedimensional wavelet transform on the rows of T ,  followed 
by the complex conjugate ojthe one-dimensional wavelet transform on the columns. When 
using complex-symmetric wavelets, the complex conjugacy is necessary in order to conserve 
the covariance property of the differential operator. An example of the band structure for 
matrices As,  A:, A: and B: (i.e. NO = 3 )  is given in figure 9 for J = 2. Full circles give 
the position of the non-vanishing elements. Open circles represent elements that must be 
added to periodize the operator. 
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A S  A: A: 8: 

F i y e  9. Example of non-vanishing matrix elemends in wavelet basis J = 2 for the second- 
derivative operator. Open circles represent elements that periodize the operator. 

5.2. Numerical algorithm 

The proposed pseudo-spectral algorithm can be summarized in the following pseudo-code. 
It involves a local wavelet adaptive grid [4.5,7,8] as well as a global up-sampling. For 
simplicity, we will restrict the description to an algorithm which can only increase the 
resolution. 

At the beginning of a time-step ( t  = tl). the field is supposed to belong to Vj (j 3 No).  
The field samplings are known, i.e. the scaling coefficients vj(t1). 

1. Makes a wavelet decomposition up to the coarsest scale ZNo, that is decompose on 

Keeps only the coefficients wi(t1) (i 2 NO) that are larger than a resolution threshold 
SI (for instance, SI = 0.0005). 
Checks if max(lwj-l(g)l) is larger than a up-sampling threshold S, (for instance, 

If YES: 
Adds coefficients wj(l1) = 0 to the uj(t1) ones, up-samples the field on b+l and 
stores in memory. 
Decomposes the field on V N ~  CB 
Keeps only the coefficients wt(f1) for which Iwi(tl)l > SI. 
j = j + l  
GOTO2 

If NO: 
2. Calculates the linear evolution on the first Ar/2 interval. 

Recomposes the field on Vj. 
Calculates the nonlinear effects on the field samplings vj(t1 + A  /2 )  using the uj(t1). 
Decomposes the field into its wavelet coefficients up to V N ~ .  
Keeps only the wavelet coefficients for which lwi(tl)l > SI. 
Calculates the linear evolution on the second At12 interval, 
Keeps only the wavelet coefficients for which Iwi(tl)l > SI. 
Recomposes the field on 6 and stores in memory. 
GOTO1. 

vN@ @ WN, @ wNo+l @ ’ ” @ wj-1, 

Sz = 0.005). 

@ WNo+l CB ... fB Wj. 
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Notice that the above algorithm is a modification of the wavelet-based adaptive 
numerical method developed in 14.81. The main differences are: (i) the pseudo-spectral 
nature, i.e. linear evolution calculated on VN, @ WN, @ WN,+I @ ,  . . WN- ,  and nonlinearity 
on V N ,  and (ii) the inclusion of a global up-sampling from VN to VN+I using the method 
described in section 4. The pseudo-spectral characteristic is always an important advantage 
in reducing the complexity of the numerical calculation when higher-order nonlinear effects 
are added to the original model as, for instance, in the modelling of very short pulses in 
nonlinear optical fibres [14,34,35]. In addition, the global adaptive part does not limit the 
maximal sampling rate to the sampling rate of the initial field. 

6. Conclusion 

Wavelets have various fields of application which go well beyond signal analysis 1361. 
Numerical simulation on wavelet bases is one of them, Here, we have proposed and 
studied a simple way to dynamically change the sampling rate of a signal which evolves 
through high-gradient phenomena. The method was based on the interpolation properties 
of highly regular complex-symmetric scaling functions. We have tested our scheme on 
the physically relevant cubic and quintic nonlinear Schrainger equations, for three typical 
high-gradient solutions: optical breaking wave, collapse and bound solitons. In all these 
cases, the up-sampling process turned out to be stable and quite accurate. 

We have also proposed a modification of the wavelet-based local adaptive numerical 
method studied in [4,8] which conserves the pseudo-spectral nature of the split-step method, 
i.e. linear evolution calculated on V N ~  @ W N ~  fB WN~+L @ . . @ W N - I  and nonlinearity on 
V N .  We think this should be an important advantage in reducing the complexity of the 
numerical algorithm implementation when higher-order nonlinear effects are added to the 
original model. In addition, the global adaptive method described in this paper can also 
be used in conjunction with the local one, when a field up-sampling from VN to VN+I is 
necessary. Actual investigations concem the implementation of this scheme and its test 
on other typical high-gradient simulations such as edge diffraction, stepindex medium and 
two-dimensional self-focusing. 
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