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Abstract. Recent work has shown that wavelet-based numerical schemnes are at least as effective
and accurate as standard methods and may allow an ‘easy’ implementation of a spacetime
adaptive grid. Up to now, wavelets which have been used for such studies are the ‘classical’
ones (real Daubechies” wavelets, splines, Shannon and Meyer wavelets, etc) and were applied to
diffusion-type equations. The present work differs in two points. Firstly, for the first time we use
a new set of complex symmetric wavelets which have been found recently, The advantage of this
set is that, unlike classical wavelets, they are simultaneously orthogonal. compactly supported
and symungtric.  Secondly, we apply these wavelets to the physically meaningful cubic and
quintic nonlinear Schrédinger equations. The most common method to simulate these models
numerically is the symmetrized split-step Fourier method. For the first time, we propose and
study a new way of implementing & global spacetime adaptive discretization in this numerical
scheme, based on the interpolation properties of complex-symmetric scaling functions. Second,
we propose a locally adaptive ‘split-step wavelet” method.

1. Introduction

This paper is devoted to an application of complex-symmetric Daubechies’ wavelets and
scaling functions to numerical simulation of nonlinear partial differential equations (PDEs).
The mathematical models we have retained are the cubic (o = 1) and quintic (o = 2)
nonlinear Schrédinger (NLS) equations

sty + Sotey + Aulu|® =0 LeR* (1.1)

because they can exhibit stong gradients for particular initial conditions and of their
importance in nonlinear optics as well as in many other fields. Throughout this paper,
we use ¢ as the evolution parameter {which is a space variable in nonlinear optics) and the
notation NLS‘+" for A > 0 and NL8'—’ for A < Q.

The idea of using wavelets to perform numerical simulations of PDEs is not new [1-8].
The motivation comes from the fact that wavelets provide a mathematical representation
which can resolve numerical difficulties due to singular phenomena. More exactly,
properties such as orthogonality and the compact support of multi-resolution bases {(scaling
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functions and wavelets) as well as the exact representation of polynomials of a fixed
degree on scaling functions, allow efficient and stable calculation of regions with transient
phenomena or strong oscillations. In addition, the multi-resolution structure of wavelet
orthonormal bases can provide a simple and effective framework for spacetime adaptive
algorithms; the adaptive-mesh refinement is implemented by successively adding layers of
‘detail’ which increase the resolution of the numerical approximation.

In previous work, numerical implementations of wavelets have been performed using
two main approaches. A first one, known as the wavelet~-Galerkin method, consists of
projecting the solution of the PDE onto the space spanned by the integer translation of
the scaling function [1-3,6]. To have good approximation properties, orthogonality and
compact support of the basis elements are required. The choice of the scaling function is
also motivated by the regularity of the projection wanted, that is, the maximum degree of
the polynomials contained in the projection space. For these reasons, Daubechies’ scaling
functions have been widely used in such analysis. Although the asymmetry of the real
Daubechies’ scaling functions does not seem to introduce a significant asymmetry in the
numerical solution, we think that the use of symmetric scaling functions, as is the case in
this work, should lead to even more accurate results. A second approach makes use of the
multi-resolution properties of the wavelets in order to develop adaptive numerical schemes
[4,5,7,8]. Here, the projection is made onto the orthogonal wavelet spaces themselves, up
to some scaling function space which fixes the coarsest resolution. The wavelet spaces are
the ‘details spaces’ of the numerical approximation and contain informations at different
resolution levels. The idea is to track the singularity by adding successive layers of
resolution, that is, adding wavelets which are sensitive at finer scales. For better stability,
the time-step of such numerical schemes can also be adapted [8].

Up to now, the wavelets which have been used for such studies are the ‘classical’ ones
(reat Daubechies’ wavelets, splines, Shannon and Meyer wavelets, etc} and were applied to
real-valued models: Burger, diffusion and linear advection equations. The Burger equation
was the most popular ‘laboratory’ because (i) it constitutes, from a numerical point of view,
a one-dimensional version of the important Navier—Stokes equation, (ii) it can develop sharp
gradients in the small viscosity limit, and (iii) the exact solution of the Cauchy probiem is
known. For these models, wavelet-based numerical schemes have been shown to be at least
as effective and accurate as standard methods [1, 8].

Qur work differs in two respects, First, for the first time we use a new set of complex
wavelets which have been found recently [9] using a particular parametrization of the multi-
resolution analyses [10]. The advantage of this set is that, unlike classical wavelets, they
are simultaneously orthogonal, compactly supported and symmetric. Second, we apply
these wavelets to the cubic and quintic NLS equations (1.1), which are historically two
of the most important models ‘on the market’ and have numerous applications in optics,
fluid dynamics, engineering, biclogy, chemistry and applied mathematics [11-16). The
cubic NLS equation is also a limiting case of the Navier-Stokes equation and has an exact
formulation of the Cauchy problem in terms of the inverse scattering method. In addition,
both models can also lead to strong gradient phenomena. For the cubic NL§‘—" model,
smooth localized initial conditions can evolve toward a typical breaking-wave phenomena
which exhibits very high-frequency oscillations [17, 18]. Also, the quintic NLS‘+’ equation,
which has similar properties to the (24 1)-dimensional cubic NLS'+’ equation which models
the three-dimensional self-focusing theory in nonlinear optics, can generate solutions with
localized structures in space which evolve quickly in time and eventually blow up [19-21].
Finally, the breather solutions [14,22] (also known as the bounded N-soliton solutions) of
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the cubic NLS“+" equations exhibit periodic peaking of the field and can be use to test the
ability of an adaptive algorithm to increase and decrease the resolution.

This paper is organized as follows. In section 2, we recall the mathematical background
needed to understand the paper: wavelet muiti-resolution theory [23-26], complex-
symmetric Daubechies wavelets [9], representation of differential operators, collocation
techniques and wavelet transform. This is not a mere exercise since the subject is relatively
new. In addition, we reformulate some known results in a simpler and original way. In
section 3, we show how the split-step Fourier method [14,27,28] can be reformulated in
terms of wavelet—Galerkin projection or multi-resolution analysis. We compare the accuracy
of the Fourier and wavelet—Galerkin versions on the typical soliton propagation simulation.
In section 4, we propose and study a new way of implementing a global spacetime adaptive
discretization in the numerical scheme based on the recomposition properties of higher-
order scaling functions. This globally adaptive algorithm will be tested on typical high-
gradient simulations {optical breaking waves, wave-collapse and bound-soliton solutions).
Here we are more concerned with the feasibility and accuracy of the algorithm rather than
its simulation time efficiency. Finally, in section 5, we concentrate on a full waveiet
decomposition. We give a description of a possible local spacetime adaptive scheme which
implements the multi-resolution analysis and incorporates a global interpolation scheme
using scaling functions in a pseudo-spectral way.

2. Mathematical backgrounds

2.1, Multi-resolution analysis

Let us first describe the basic idea and the principal characteristics of the muiti-resolution
wavelet decomposition. The main equation of the multi-resolution theory is the scaling
equation which establishes a connection between the two symmetries underlying the wavelet
theory: dilations and translations. Given a set of coefficients a, & € Z which we will
describe later on, the scaling equation

ex)=2Y ae@x—k)  xcR @.1)
k

and the normalization
[owa=Fa=1 @2
P

define a scaling function @(x). By defining the set of translates of the dilated function ¢(x),
oux) =2Pp@x—k)  jeZ 2.3)

the multi-resolution analysis of L2(R) consists of the decomposition of the Hilbert space
L2(R) (the space of square-integrable functions) into the chain of closed subspaces

e C W CVi Vi e (2.4)
where

Vj = Span {(aj'k<x), ke Z} (25)
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and such that

(V= {0} v =2m. (2.6)
i f
Multi-resolution aims to decompose LZ(R) as
LXR) =V, &Y W, VA
izfo

where W; is defined as the orthogonal complement of V; in Vjy, that is

Vi =V, & W;. (2.8)
For a given scale j,

W; = Span {, 1{x), k € Z} (2.9)
where

Y () =224 (20 x — k) (2.10)
and ¥ (x) is the wavelet of the multi-resolution analysis which satisfies

P(x) =2 brp(x — k) xeR. (2.11)

k

The orthogonality between the space V; and W; leads to the relation
bi = (—1)*a; (2.12)

where ‘bar’ stands for complex conjugate.

Following (2.7), any function of L2(R) can be expanded as a linear combinaton of
translates of the scaling function ¢{x) at some fixed scale and the translates of the wavelet
¥ (x) expressed at finer scales as

FOY =3 vjoa@pu() + 3 3 wiedux). (2.13)
4 Jzie Kk
H for some small scale jp = N (large N) the second contribution in (2.13) happens to

be negligible (it corresponds to the high-frequency component of f{x)), then f(x)} can be
written as the so-called ‘wavelet-Galerkin’ expansion

flx)= Z UN kPN & (X) (2.14)
k

Thanks to the orthonormal decomposition (2.8), we then have
V=V, @ Wy, @ Wapra ... Wy (2.15)

for some larger scale No < N (see figure 1). This decomposition amounts to consider the
equivalent finite expansion for f(x),

N1

FOV=Y N o () + Y D wiatiax) . (2.16)
k =Ny k

In this expansion, the first contribution represents the approximation of f(x)} at a given

‘coarse’ scale. The remaining terms are the corrections at finer scales. Equation (2.16)

completely describes the function f(x) withie the accuracy of the projection (2.14),
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Figure 1. Schematic representation of the multi-resolution analysis, ¥ and Ay are the finest
and coarsest resolution levels, respectively.

2.2. Complex symmetric waveless

Let us now tarn to the construction of the basic ingredient of the multi-resolution analysis:
the scaling function @(x). We consider the solutions of (2.1) with four important constraints

on ¢(x):

(i) compactness of its support,
(i1) orthogonality of its translates,
(iif) regularity, and

(iv) symmetry.

The first condition insures an exact local description of the functions of L2(R). As
a consequence, there are a finite number of non-vanishing scaling coefficients a; and we
will consider ¢y #O0for k = —J, -7+ 1,...,J, F+ 1, where J is an arbitrary integer.
It is straightforward to show that both @ (x) and y; x(x) have a support in the interval
(27 (=J + k), 277 (J + k+ 1)]. The first three conditions define the so-called Daubechies’
wavelet analyses [23] for which the regularity condition sets the ‘polynomial content’ of
the V spaces (scaling functions of regularity R (R < J) allow exact representations of
polynomials of order R in the V spaces). The scaling function and its translations thus
define a polynomial interpolation scheme up to order J. In this work, we consider the
maximum regularity for a given compact support, i.e. we take R = J.

The symmetry requirement has been explored only recently [9]. As already noticed
by Lawton [29), the solutions must be complex valued. Figure 2 shows an example of a
complex-symmetric scaling function and wavelets for J = 4. The values for the a;’s can
be found in [9). When the above four constraints are satisfied, the scaling functions ¢, (x)
and the associated wavelet ¥ (x) are found to be even and odd, respectively, about the
point

X =271+ k2, @.17)

The symmetsy property of ¢(x) thus implies that the odd-centred moments vanish, that is,
/(x - Nomar=0  k=1,35. @2.18)

In addition, the second-centred moments (¢ = 2) turn out to be purely imaginary {9].
Property (2.18) helps us to compute the coefficients vy of the Galerkin expansion (2.14)
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Figure 2. Real part {full curve) and imaginary part of the J = 4 complex-symmetric scaling
function (upper figure) and wavelet (lower figure),

with good accuracy. In fact, making a Taylor expansion of f(x) around the points xy x
in (2.17) and using the orthogonality and the normalization of the scaling function, the
projection of f(x) onto Vy leads to

Uy, = {@nxl )
=22 f 7(2%x — k) f(x)dx

(2.19)

ey CF Ok
ns 212 [f(xN,k) — iy2-@N+D 470w k) +. :|

dx2
where y is a real coefficient which only depends on J (e.g. y = 0.322748 for J =2 and
y = 0.178 936 for J = 4). For sufficiently smooth functions f(x) and large N, the second
term in (2.18) can be neglected.

Thanks to (2.1) and (2.11), one can show that the coefficients v;x and w;i (No € j <
N — 1) can be calculated recursively from vy by

Vjm1g = '\/Ezam Vi, 2k Wiy k= ﬁzgm Vi 2k+m - (2.20)
m m

Such a transformation will be denoted by W. The orthogonality conditions imply the
following inverse for W:

Uitk = ﬁZ{ak—Zm Ujm + bi—om Wiml. (2.21)

Finally, in the particular application of the present work, the simulation is done for
a finite ‘spatial window’. This implies that the infinite range of & will be reduced to a
finite set by normalizing the spatial sampling of f(x) on the interval [ — 1, 1]. Since the
compact support of the basis functions is finite, the coavolutions (2.20) and (2.21) involve
a finite number of sampling points outside the window. The field samplings outside the
window can, however, be estimated using simple extrapolation techniques; periodization,
extrapolation or reflection. We have found it convenient to use periodization when f(x)
has finite bandwidth (e.g. bright solitons} and mirror reflection for infinite bandwidth (e.g.
dark soliton). The function f(x) will then be written as in (2.16) with only 2/ terms at
each level j (see figure 3), corresponding to —3 < x4 < 4, i.e.

keK(Gy={-2"", -2 +1,...,27 —1}. (2.22)
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Figure 3. [llustration of the position of the sampling
. points in the normalized x-window for the sirpulation. For
symmetric wavelets, these points correspond to the centre
of the wavelet support.

-1/2 0 1/2

2.3, Differential operators

Let us conclude this section with the description of the differential operator d* /dx" in the
multi-resolution scheme. Following the expansion (2.15), this amounts to considering the
matrix elements of the differential operator in the space Vy, that is

e\ _ [ de)
oo )—fqo(x Ic)—-—dxn dx. {2.23)

C:E"J = (ﬂﬂo,k (x)

Using (2.1) with an obvious change of variable, we obtain

2J J+1
e =2 ST N Gk €. (2.24)
m==2J m'==]

The parameters .::,(:’J only depend on the wavelet order J and not on the wavelet type for a
given J (real, complex symmetric or complex asymmetric).
Equation (2.24) can be cast in the matrix form

1

e (2.25)

Ac™ =

where the (4J + 1) x (47 + 1) matrix 4 is the ‘Lawton matrix’ [26] of components

ES
App = 2 G+ —~2km - (2.26)

m=—J

Therefore the matrix elements of the rth derivative operator in Vp are the components of
an eigenvector of A for the eigenvalue A, = 1/2"%!. Consistency requires that such an
eigenvector should be unique for this »th derivative operator to be meaningful. In particular,
the n = 0 derivative condition is nothing but the orthonormality condition on the translates
of @(x). This is the Lawton theorem. The other eigenvalues A = %, %, ... resolt from the
regularity constraints on the scaling coefficients.

Let us mention that for a given n, equation (2.25) only defines the corresponding
eigenspace for A,. Finding the unique eigenvector ¢ requires an extra relation which
normalizes the A,-eigenvector. This relation can be derived as follows. Let us define

O (x) =3, "p(x — ). Denoting by M, the kth moment of the scaling function, i.e.

M = f Fx)x*dx My=1 (2.27)
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we can show that

n
!

fgﬁ(x —k)x"dx = f@(x — k) ®p{x)dx 4+ Z[ ( )Mu;ﬁ(x -B®,(x)dx. (2.28)
=1

Since we consider orthonormal bases and J vanishing moments for the wavelets, i.e.

f&(x)x*dx:() 0Kk J

relation (2.28) yields

no__ - h
x" = £=0f(l)Mg B, (x).

By successive derivation of this expression, we obtain
PP (xy=n! and P (x)=0 Vp>n

and consequently

00
2 f e (x — ) =nl.
[=—00

Equation (2.32) leads to the normalization condition

o0 .
37 e = (-1l

I=—p0

Thus, given an arbitrary eigenvector r™, the components of ¢ satisfy

DR
¢ Yoy 1Y ¢

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

Notice that this result uniquely defines the nth derivative operator only for n < J. Tt will

be used in the next section to express the NLS equation on the wavelet basis.

3. The basic numerical algorithm

One of the most popular numerical scheme to solve NLS-type equations is the symmetrized
split-step Fourier method [21,27,28]. This is essentially a pseudo-spectral algorithm which
handles the linear and nonlinear parts of the model differently. Because nonlinear terms are
more easily calculated in the original spacetime domain, only the linear part is decomposed

into its Fourier components.
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3.1, The symmetrized split-step method on wavelets

The NLS equation (1.1), and generally any evelution equations of the form
e =L+ N{)u 3.1

where L and N(t} are linear and nonlinear operators, respectively, can be solved formally
as

u(t) = e u(s) (3.2)

where £ = (t,—n) L, N = ff N(t)dt and #, t; are the initial and final times, respectively.

In general, linear and nonlinear effects act together during the evolution and cannot be
handled separately. Mathematically, this results from the fact that £ and N do not commute,
that is, ¢StV £ efeV, The essence of the split-step method consists in assuming that for
a small time-step A = # — #;, we can pretend that the linear and nonlinear terms act
independently such that

u(ty) = 5% eE 2y 1)) . (3.3)

Relation (3.3) is the basic scheme of the numerical algorithm.

The main interest in the method is that the execution of the linear operator e~/2, when
carried out in the Fourter domain, can be calculated numerically very quickly. The Fourier
basis is, however, not well adapted to high gradient phenomena since the basis elements
are globally defined. In contrast, the wavelet basis is a local one and the linear evolution
can, of course, be calculated on it. In particular, one can project the field on a space Vy,
where 2V is the number of field samples (the wavelet-Galerkin method), or make a wavelet
transformation of it, that is, decompose the field on .., Wy_3 & Wy_» & Wy—;. In both
cases the projection can easily be implemented using the same numerical algorithm without
discarding the essential featutres of the time-step splitting. Schematically, the evolution
over one time-step At follows the symmetrized split-step method except that the Fourier
ransform F is replaced by a projection Py onto Vy or by a wavelet transform W on
Vi, & Wy, ® Wa,p1 ... @ Wa_y, together with the appropriate representation of the second
derivative operator. Finally, the nonlinearity can be treated in the finest resolution space
V.

3.2. The wavelet—Galerkin projection

For now, let us concentrate on the wavelet—Galerkin procedure. We will go back to the
wavelet projection in section 5. Suppose the field «(¢, x) has been regularly sampled over
2V points on the interval [—-;-, %] Projecting u(t, x) onto Vi, we obtain

28—l
u(t.x) = Y 27 uy (8w () (3.4)
k=—2N-1
where uy (1) = u(t, xnz) and xyyp = 13},%5 are the collocation (sampling) points. The
advantage of knowing the field projection on Vyy is that one can easily calculate the nonlinear
term using a simple collocation procedure. In fact, if the sampling is dense enough, the
nonlinear term [u(f, x)|*° can be estimated from (3.4) with coefficients 27¥/2|uy , (£)|*.
This will be used throughout all our simulations to calculate the nonlinear effects.
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The main difference between Fourier and wavelet scaling functions bases lies in the
representation of the second space derivative [30,31]. In particular, this operator is no
longer diagonal in the scaling function basis.

Substituting (3.4) into ix, + %un = (), multiplying from the left by @y ;(x), integrating
over —o0 < X < o0 and making use of the orthogonality relations between translated
scaling functions, leads to an equation of the form

d .
-d—;'U.N = %ITN’LLN (35‘2)
where
42 Sl Sl -
(Tw)u = f Ongg 5 ova dx = 23N N Byt - (3.5b)
m==J m'==J

The matrix 7; is a band-diagonal matrix having the same 4J + 1 non-vanishing elements
on each row. Equation (3.5) can be solved exactly as

uy(ty) = el 2y (). (3.6)

As mentioned in section 2, the coefficients cfz) only depend on the wavelet order J and not
on the wavelet-type. This is not the case for the matrix Ty. In particular, Ty turns out to
be real and symmetric for complex-symmetric scaling functions.

The value of the coefficients cfz) for the wavelet used in this work, i.e. J = 2, 4 and 8,

are given in table 1.

Table 1. Values of the coefficients c,m for the second derivative operator,

= r=2 I=4 /=8

o -8 -3334994313783547318  —3.518861 054010038
e e 2.41479035119287232 2.194072686 579494 |
e - -0.6495021899807847862  —0.6105291120912149
& = 0.1809535500934093201  0.247 3323226946289
P = —0.02990798043765740196 —0.094 970844750517 18
e 0.000794 620557 1436 0.030068 613612 554 4
2 0.000367 14538389 —0.007 248 478 692 850 98
P 0.000001 656 544 3604 0.001 230 499099 443 004
S 0.000000003538760056  —0.000 133 610006 425 636
e 0.000009 1309307386
i —0.000000 734 346 69

t? 0.000000 047555795 9
pe 0.00/000 006 327 051 767
e 0.000.000 000 049 283 6
Y 0.000 000 0000002793
cf? 2.95325 x 10~

e 1.7699 x 102
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3.3. Accuracy considerations between Fourier and wavelet-Galerkin projections

It is instructive to compare the accuracy of the split-step Fourier and wavelet~Galerkin
numerical schemes. Only typical results, using the fundamental soliton solution of the
cubic NLS'+’ equation as a benchmark, will be presented here. For A = I, this exact
solution is

u(t, Vs = sech(x — vz) gxH-v/2 3.7

where v is the soliton speed. The parameter v has not been normalized to O using
the Galilean boost symmetry of (1.1) since this symmetry is broken by the spacetime
numerical discretization. The other two free parameters, the amplitude and phase, have been
normalized to 1 and 0, respectively, using the dilatation and constant phase symimeties of

(L1).

0.001 . r T — T r —
0.0001 p=pi/8 = ~ ]
-4 o P
2 vepi/g < e e = -~ ==
u le—05p - - k
LI} -
-
5 Pl
3 b u=( -~
3 1e-06f .
= -
£ [
o
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- v=0 r A 1 1 L L
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Figure 4. Evolution of the mean square error on the field amplitude and phase for the stationary
(v = ) and moving (v = = /%) fundamental soliton solution using Fourier and wavelet—Galerkin
prajections with J =2, 4 and 8,
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We have compared solution (3.6) to its numerical simulation (with initial condition
u(0, x)g01) for v = 0 and v = 8/7 using Fourier and J = 2, 4 and 8 scaling function bases,
over a time range of 7 /4 with 1024 sampling points and a time-step of At = 7/2560. The
mean square error on the amplitude and phase is calculated over the 256 central samples
using the formula

172
eITor = I:Ax Z | Foact _ Finumiz] (3.8)
i

where Ax is the space-step and F is the amplitude or phase. The results are depicted in
figure 4, which gives the evolution of the errors at a regular time interval of n/32. The
J = 2 basts is always less accurate than Fourier, J = 4 and 8; up to 100 times less accurate
for v = 0. This can be explained by the fact that, even though the second derivative operator
can be represented on the J = 2 wavelet basis, the scaling function and wavelet are not
C®, The cases J = 4 (which is almost C®) and J = 8 give the same error as Fourier for
the test function (3.7). Note that more irregular test functions could lead to different results
for J = 4 and 8 if their representation in terms of fourth-order polynomials is not accurate
enough.

In view of the above results, for the rest of the work we choose a multi-resolution space
of order J = 4 for our simulations. The J = 8 basis will only be used in the up-sampling
scheme which will be described in the following section. We believe that this possibility
of mixing wavelet orders, i.e. regularity levels, in a numerical scheme is an advantage over
standard numerical methods and should be exploited in other applications of wavelets.

4, A globally adaptive algorithm

4.1. Description

This section concerns a global adaptive grid for the split-step Fourier or wavelet—Galerkin
methods described in section 3. More precisely, we want to show how regularity properties
of scaling functions can be used to increase (or decrease) the field sampling over the entire
x-window during the simuiation [32]. In particular, for the Fourier projection, this results in
an efficient hybrid numerical algorithm which combines the rapidity of the split-step method
for calculating the time evolution and the interpolation properties of scaling functions for
the up-sampling process.

[t]

The idea is the following. At the beginning of each time-step, one performs a one-
level wavelet transform of the field u(¢, x) from the sampling level j to level j — 1,
in order to detect the presence of strong gradients. When the maximal absolute value
of the wavelet coefficients w;_; is greater that a predetermined threshold (fixed to 0.005
in our simulations), the number of collocation points is doubled using an interpolation
process on the field sampling at level j. This should be done by performing a transform
T, from level j to level j + 1, of the 2/ field samples v; with the 2/ wavelet
coefficients w; set to zero. The result of this transformation should be a set of 2/*!
scaling coefficients v;4, which constitute the new field sampling (after multiplying by
a ~/2 normalization factor}. An imporiant point to be careful about is that no local
asymmetry is introduced during the up-sampling process. This is where the symmetry
properties of the complex scaling functions are useful. Unfortunately, a recomposition
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Figure 5. (2} Evolution of the field amplitude, field phase and wavelet coefficient amplitude
for typical breaking-wave phenomena in the cubic NLS'—’ equation and (b) variation of the
maximum amplitude wavelet coefficient during the adaptive simulation.

using complex scaling functions slightly couples the real and imaginary parts of the field
u(t, x) (for instance, by introducing imaginary components in v;.; on an initial real field
”1) This can be avoided, by up-sampling the field, using a linear combination of the
inverse wavelet transform and its complex conjugate, that is 7 = 2(W‘ +W )

order words, by up-sampling the field using the real part of the coefficients a; only.
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In fact, we have found this recomposition scheme very accurate, provided that the
order of the up-sampling scaling function is larger than the order of the decomposition
wavelet. The reason is that the second centred moment of the scaling function ¢(x),
that is f (x - %)zé(x)dx, is purely imaginary and decreases with order J. In addition,
Sx— %)kqﬁ(x) dx = 0 for odd values of & since @(x) is symmetric. In our simulations, we
have chosen to up-sample with the J = 8 scaling function and decompose with the J =4
wavelet.

4.2. Applications

We have written a C program which performs the above-described global recomposition.
Both Fourier and wavelet pseudo-spectral methods described in section 3 have been tested
and have given similar resuits. Fast Fourier transforms and complex structures have been
implemented using standard techniques [33]. A decrease in the time-step by a factor of 4
is done after each up-sampling in order to keep numerical stability. The maximum wavelet
amplitude for the up-sampling thresheld has been fixed to 0.005.

Figure 5 shows a first simulation leading to high-field gradients. This is a typical
‘breaking-wave’ phenomena in optics which appears in the normal dispersion regime,
that is, for the cubic NL§‘—" equation with A < 0. In this simulation, A = —900,
the initial field u(0,x)} = sech(x) has been sampled 128 times, the time range is
m/32 and the initial time-step has been set to x/1600. The amplitude of the wavelet
coefficients w(#) is quite instructive of the sharp field structure evolution. Figure 5(b)
shows the evolution of the maximal amplitude of the wavelet coefficients as ¢ increases.
Each peak is the result of a new sampling. The final number of collocation points
is 2048. A comparison with a non-adaptive simulation (with 2048 samples and the
corresponding At = 7 /409 600} shows that the accuracy of the adaptive simulation is
quite satisfactory. In fact, no difference can be detected on the amplitude and phase
from the plots, Only the wavelet coefficients w;_;, where j is the sampling level, are
sufficiently sensitive to show that the slight ripples around |x| = 2 at the end of the
sirnulation are absent in the non-adaptive simulation (see the bottom right-hand plot on
figure 5(a)).
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Figure 7. (@) Variation of the maximum amplitude wavelet coefficient during the adaptive
simulation of the twg-soliton solution of the cubic NLs*+’ equation and (b) field amplitude, field
phase and wavelet coeffcient amplitude after one period with and without adaptivity (first and
second row, respectively),

A second simulation generating high gradients is shown on figure 6. This is a typical
‘blow-up’ phenomena which can be observed for the NLs*+' equation whenever the space
dimension D and the nonlinear coefficient ¢ are related through o D 2 2 [19-21]. In this
case, any initial condition having a L®-norm larger than the critical value fixed by the L?-
norm of the fundamental solitary wave solution evolves toward a singularity. In our case
(D =1 and o = 2) the exact expression for the solitary wave can be normalized to

ter(t, %) = 3 ¥sech!2(x) /3 @.1)

The initial condition in figure 6(a) has been chosen as 1.5u5q;(0, x) with only 64 samples
and A¢ = 0.977/320. The maximum sampling has been fixed at 2048 points. As shown
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Figmre 8. () Evolution of the field amplitude, field phase and wavelet coefficient amplitude for
the bound three-soliton solution of the cubic nLs'+* equation and {b) variation of the maximum
amplitade wavelet coefficient during the adaptive simulation,

on figure 6(b), the field evolves through five successive up-samplings up to 2048 points.
At the end of the simulation, a very sharp peak is generated (over a large pedestal). Our
up-sampling process has been able to handle such a high gradient effect.

The above adaptive algorithm can also be modified to allow a decrease in the number
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of sampling points when sharp gradients tend to vanish. Similarly to above, the new field
sampling w(t, Xxy_, &) = 2¥~12py_; can be obtained form the scaling coefficients vy using
the inverse 7! of the above up-sampling transform 7.

Interesting solutions which can be used to test this idea are the breather {or bounded
soliton) solutions of the cubic NL$‘4-’ equation. These are solutions where the amplitude
evalves periodically in time, with a period of 7/2, through successive amplitude peakings.
They correspond to the initial conditions

u(0, X)pe = Nsech(x) (4.2)

where N is the solution order (the number of solitons involved in the solution).

Figure 7(a) shows the variation of the maximal amplitude of the wavelet coefficients
with adaptivity for the case N = 2, over one period (f = = /2) with 128 initial samples
and At = m/2560. The upper threshold has been fixed to 0.005 and the lower one to
30% of the maximal wavelet amplitude obtained after the first up-sampling. This is to
avoid a premature decreasing of the sampling due to the oscillatory structures (see figure
T{a}) during the up-sampling relaxation time. The sample number goes up to 512 at the
half-period where a peak structure arises in the field amplitude.

Although the up-sampling process is very accurate for the field amplitude, the field
phase is more sensitive to it. This is illustrated, for instance, in figure 7(b}, which compares
the field amplitude, phase and wavelet amplitude coefficients at the end of the simulation
obtained for the above adaptive grid (first row) and a fixed 128 points simulation with
At = m/2560 (second row). One observes that the field amplitude is more accurate for
the adaptive simulation. The same observation stands for the central region of the phase.
However, the phase has a more important oscillatory structure at the window limits than
the non-adaptive scheme (5% of the theoretical value of w/4 rather than 0.2% for the non-
adaptive algorithm). One can improve the accuracy by increasing the initial sampling rate
and/or decreasing the up-sampling level. In any case, this cannot be considered as a major
drawback of the algorithm since the ficld amplitude is very small at the window.
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Finally, figure 8 shows the numerical simulation for the N = 3 breather using the same
initial parameters as the N = 2 case. The number of collocation points varies as 128-
256-512-1024-512-1024-512-256-128, following the periodicity in the field evolution.
One observes that the periodicity of the field amplitude is well described. Taking into
account that four up-samplings and four sub-samplings have been performed during the
simulation, the 10% accuracy on the phase, with respect to the theoretical value of 7/4, is
very satisfactory.

5. A locally adaptive algorithm

In the previous section, we have used wavelets (or more precisely scaling functions) as an
interpolating tool for implementing a global adaptive grid. We will now concentrate on
local adaptivity using the multi-resolution property of the wavelet basis. In this paper, we
will restrict ourselves to the description of the numerical algorithm. Its implementation and
testing will be reported later.

5.1. Linear evolution on wavelet bases

Let us first recap on how the linear part of the NLS equation is projected onto the wavelet
basis. The first step is to calculate the matrix representation of the second-derivative operator
in the wavelet basis. Suppose the field u(¢, x) has been sampled 2V times and projected onto
Vi as in (3.1). Using the multi-resolution decomposition of Vi up to a coarsest resolution
2% Ny £ N, one obtains

2M-1- N=} 271

ut, )= D Unma@®ews@ + > Y wrlvx). (5.1)

k=—2M-} f=Np k=—2/-}

The corresponding scaling and wavelet coefficients contains the ‘averaged’ and ‘detailed’
information on u(t, x) at a given time r, in the transformed space, Substituting (5.1)
into i, + %uxx = 0, multiplying from the left by @y, :(x) and ¥;;(x), integrating over
—00 < x < oo and making use of the orthogonality relations between scaling and wavelet
functions, leads to an equation of the form

Wy_] Wy-1
d . '
5 Wyp+2 | = %1 M| Witz (5.2a)
Whg+1 WNy+1
Wy, Wy,
PNy Ve
where
N-1 N=1 N-t N1
An-1 - AN0+2 AN(:+1 AND BNu
No+2 Not2 4 NotZ  pigt2
M= Aﬁ_ll e Aﬁﬁ? No+1 Aﬁo . Bifrn [ (5.20)
0+ o+ o+ o+ )
A%_l Aﬁn-ﬂ Aﬁo.ﬂ A By,
(4] H (-]
Ay o Am,-;-z AN(,+1 Ay By

No No No
Tali o Ty Ton Twe T
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and A, B, T and T are band matrices whose elements are

2

(A] i = f E}J’.k&ﬂ’j,fdx Al = A, (5.3a)
" . ,

(B Ju = f 'ﬁ;',ka'gsﬂj.: dx 8/ =5 (5.36)
. a2 )

(Fj‘ = f @y g Ex‘g%'.rdx Pf =Ty (3.3¢)

dZ
(T = f qﬁj,k@w.zdx. (5.3d)

Matrices 4;, B;, I'; and T; have 4/ + 1 non-vanishing elements on each row. Matrices
A; and T; are real and symumetric while I"; = (B;)'. For complex-symmetric wavelets, the
complete matrix M is Hermitian. For real wavelets, it is symmetric.

Equation (5.2) can be solved exactly as

wy-1{f2) wy-_1(t)
Whp+2(t2) | = ela=tIM/2 | wiga(ta) | (5.9
W1 (82} Wa,+1{f1)

W, ('tZ) wNo (Il)

UNo (2} Uiy 6]

The matrix elements for M can be calculated once and for all and stored in memory. To
facilitate this calculation, we can use the fact that operators A" with j < j', can be obtained
by applymg a wavelet transform to each row of all operators By. Similarly, operators AJ
w1th J’ < j, can be calculated by applying a wavelet transform on each column of operators
. These matrices A;, B,,T'; and T; can be expressed in terms of the coefficients ¢; of
sectiOn 2 as
i+l g4l

(A)u = 223 Z Z Embm’cé%;)c_g).;_m_mr (5.5a)
m==J m'=~J
S+ F+]

(Bj)kg =22j+3 Z Z Emamwf’!?&—[)-}-m—-m' ) (SSb)
m=—~J m'=-J
J4+1 JH]

T =222 3" " Gubwey_pyimen (5.5¢)
m=—J m'==7J
JA1 T

Gt =277 33" G ey (5.54)

m=—J m'==J

where cfz’ are given in table 1.

Finally, a second and more practical way to calculate the matrix M is to perform a two-
dimensional wavelet transformation of the matrix Ty. For tensor product wavelet bases, this
consists of performing a one-dimensional wavelet transform on the rows of Ty followed
by the complex conjugate of the one-dimensional wavelet transform on the columns. When
using complex-symmetric wavelets, the complex conjugacy is necessary in order to conserve
the covariance property of the differential operator. An example of the band structure for
matrices As, A3, A; and Bj (i.e. No = 3) is given in figure 9 for J = 2. Full circles give
the position of the non-vanishing elements. Open circles represent elements that must be
added to periodize the operator.
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Figure 9. Example of non-vanishing matrix elements in wavelet basis J = 2 for the second-
derivative operator. Open circles represent elements that periodize the operator.

5.2, Numerical algorithm

The proposed pseudo-spectral algorithm can be summarized in the following pseude-code.
It involves a local wavelet adaptive grid {4,5,7,8] as well as a global up-sampling. For
simplicity, we will restrict the description to an algorithm which can only increase the
resolution,

At the beginning of a time-step (f = #;), the field is supposed to belong to V; (j 2 No).
The field samplings are known, i.e. the scaling coefficients v;{(#;).

1. Makes a wavelet decomposition up to the coarsest scale 2%, that is decompose on
Ve @ Wiy @ Wy &+ @ Wiy,

e Keeps only the coefficients w;(#;) (i 22 Np) that are Jarger than a resolution threshold
8] (for instance, §; = 0.0003).

e Checks if max{Jw;-1(#)[} is larger than a up-sampling threshold S; (for instance,
8> = 0.005).

If YES:
e Adds coefficients w;(f;) = 0 to the v;(1,) ones, up-samples the field on V., and

stores in memory.

Decompaoses the field on Vi, @ Wy, @ Wiga1 @ ... 8 W,

Keeps only the coefficients w;{(f;) for which |w; ()| > 5.

j=j+1

GOTO 2

=
Z

ee e 00000500 e

Calculates the linear evolution on the first At/2 interval.

Recomposes the field on V}.

Calculates the nonlinear effects on the field samplings v;(t; + A /2) using the v, (#1).
Decomposes the field into its wavelet coefficients up to Vy,.

Keeps only the wavelet coefficients for which w;(f)] > 5.

Calculates the linear evolution on the second Atf/2 interval.

Keeps only the wavelet coefficients for which |w;(#n)| > §.

Recomposes the field on V; and stores in memory.

GOTO 1.
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Notice that the above algorithm is a modification of the wavelet-based adaptive
numerical method developed in [4,8). The main differences are: (i) the pseudo-spectral
nature, i.e. linear evolution calculated on Vi, @ Wy, @ Wa,s1 @ - - @ Wy—y and nonlinearity
on Vx, and (ii} the inclusion of a global up-sampling from Vy to Vyyy using the method
described in section 4, The pseudo-spectral characteristic is always an important advantage
in reducing the complexity of the pumerical calculation when higher-order nonlinear effects
are added to the original model as, for instance, in the modelling of very short pulses in
nenlinear optical fibres [14, 34, 35]. In addition, the global adaptive part does not limit the
maximal sampling rate to the sampling rate of the initial field.

6. Conclusion

Wavelets have various fields of application which go well beyond signal analysis [36].
Numerical simulation on wavelet bases is one of them. Here, we have proposed and
studied a simple way to dynamically change the sampling rate of a signal which evolves
through high-gradient phenomena. The method was based on the interpolation properties
of highly regular complex-symmetric scaling functions. We have tested our scheme on
the physically relevant cubic and quintic nonlinear Schrodinger equations, for three typical
high-gradient solutions: optical breaking wave, collapse and bound solitons. In all these
cases, the up-sampling process turned out to be stable and quite accurate.

We have also proposed a modification of the wavelet-based local adaptive numerical
method studied in [4, 8] which conserves the psendo-spectral nature of the split-step method,
i.e. linear evolution calculated on Vy, @ Wy, ® Wy, 41 & - - - & Wy_; and nonlinearity on
Vy. We think this should be an important advantage in reducing the complexity of the
numerical algorithm implementation when higher-order nonlinear effects are added to the
original model. In addition, the global adaptive method described in this paper can also
be used in conjunction with the local one, when a field up-sampling from Vy to Vi is
necessary. Actual investigations concern the implementation of this scheme and its test
on other typical high-gradient simulations such as edge diffraction, step-index medivm and
two-dimensional self-focusing.
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